CURVATURE OF OIL WELL INDICATOR CHARTS
IN FRACTURED POROUS RESERVOIRS
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and V. I. Mishchevich

In the course of hydrodynamical investigations of absorbing strata designed to observe the drop in
the level in oil wells [1], it was discovered that Q—Ap indicator charts (here Q is the instantaneous liquid
flow rate, Ap is the instantaneous excess pressure} show a characteristic curved shape (Fig. 1) recurring
in general traits in most of the wells investigated. In the range of low liquid flow rates, the indicator chart
appears convex facing the flow rate axis over a small chart interval, while in the range of large flow rates
it is close to a straight line cutting off a terminal segment on the pressure drop axis.

The absorbing strata are fractured and vesicular sandstones characterized by very high hydraulic
conductivity and rapid stabilization of conditions (in a matter of minutes). This last fact provides the basis
for treating the indicator charts obtained under transient conditions as stationary flow characteristies of
the absorbing stratum.

Within the framework of this assumption, the observed shape of the indicator charts can be accounted
for by assuming that the initial (limiting) pressure gradient which has to be overcome before the liquid can
begin flowing is detectable in porous blocks of low permeahility when the stratal fluid seeps through. The
reason for that could be the presence of some, even a low, limiting shear stress in the liquid, and its man-
ifestation as a result of the interaction between the liquid and the porous medium (water) or as a result of
the manifestation of capillary effects in the porous blocks (see [2-4] for more detail). Below, we present
a description of the phenomenon within the framework of the overall filtration scheme in media of double
porosity, as proposed in [5, 6].

The phenomenon under discussion has a lot in common with the increase in the effective thickness of
the stratum when the production rate of an oil well is stepped up. It is most offen related to the appear-
ance of fracturing in a stratum leading to new partings. But the increase in effective thickness is observed
not only in injection wells, but also in producing wells. It is therefore natural to assume that the effective
thickness depends not on the pressure (or at least not solely on the pressure) but on the pressure gradient
per se. Compelling arguments in support of that assumption are marshalled in [7]. The change in effec-
tive thickness (new partings) can be accounted for in turn by the nonlinearity of the filtration law (by the
presence of an initial pressure gradient varying from one parting to the next) [8]. The special feature of
what we term the fractured porous medium is that the effect of inertia~related (quadratic) terms in the law
of hydraulic resistance can become substantial in flow through the cracks.

1. We consider a fractured porous medium consisting of porous slugs or blocks separated from each
other over almost the entire surface by fissures. We shall assume that the porosity m of the blocks is
much greater than the total volume of the fissures per unit volume of the medium, and that the hydraulic
conductivity of the blocks is commensurate with the hydraulic conductivity of the system of fissures.

We now state the generalized Darcy law (law of filtration with limiting gradient) for the flow of liquid
through porous blocks
- M o gradp (1.1
up=— (gradp Tlgradm)’ {grad p| > )
u,=0, |gradp|<v
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Here k, is the permeability of the porous blocks, vy is the limiting pressure gradient for blocks, and
p is the pressure in the fissures.

The existence of the limiting pressure gradient can be left out of account when treating flow through
the fissures, since the opening of the fissures is much greater than the mean pore size in the blocks, but
the quadratic term in the resistance law must be taken into account. We then have [9]:

grad p = —p (1 + Bu)u, /& (1.2)

Here u, is the filtration rate through the system of fissures, k; is the fracture permeability, and 8 is
a coefficient.

We now introduce the vector of the total liquid flow through unit area of the stratum
u= u; + u, (1.3)

Upon eliminating u and u, from Egs. (1.1)-(1.3), we obtain the relationship between u; and grad p in
the form

grad p = — (u/ky) (1 +Bu)u (v < w)

(1.4)
— pu B Wk B ki k1 4yBk1 4&he1Bu \ Y2 o
mradp = —[r+ 5+ g o — g (H i H2 T+ ] e
where
uy =1, B (V14 4Bvk, ju —1) (1.5)
The total flow satisfies the continuity equation
divu=20 (1.6)
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Equations (1.4) and (1.6) show that the flow in question is equivalent to flow through a homogeneous
stratum in the case of a nonlinear filtration law of the form (1.4). Specifically, when 8=0 Egs. (1.4) con~
vert to the piecewise-linear filtration law

u= ——E—grgdp, u,<7~=k%Ar (1.7)
k1 ks ka gradp
=== [gradp T———-—k1+kz ]gl‘adp[] u>h

On the whole, the pattern of flow has a lot in common with the flow of a viscoplastic liquid, discussed
earlier [8], through a layered stratum consisting of partings of contrasting permeability. Figure 2 shows,
plotted in dimensionless coordinates, z = |grad p|/y, x=u/A, the form of the arbitrary filtration law (1.4)
when different relationships obtain between the parameters C=ky/k; and B=8a, as well as the dependence
y=uy/A on the parameter B. Here curves 1 refer to C=1, and curves 2 to C=2, curves 3 to C=10. Un-
primed numbers correspond to B=10, primed numbers to B=2.

2. By using Egs. (1.4) we can readily arrive at the relationship between the flow rate of liquid ab-
sorbed by the stratum and the pressure in the well. This relationship is described by the equations

Ap=LtL_ c[lni-;-Bx(i—p)], <t

Dtkah
Ap =gl [c+ By + 2] (1— 4) + e (2.1)
zg(1,1) — g (x,
~ e L [Ve Rl e L BC (U —pa)} d<a<tro)

S 1—p 1 g | @D 2 1 Atg@e)]) (L
Ap = anh{[c(1+3)+ ZBC] T — 5 T 280 *Tln[—y—gm]i (p <’”<°°)

Here
o= 25, B=pu, cz_’;}, A= (1 - C)2 +4BC2(1 4+ B)
g (z,p) = VAT L 4pBCx

= e
Specifically, when 8=0, these equations become simplified, converting to

S T |
25tr uoh

Ap=—0Q*Clnp, z<<1  (Q* =pQpnkh)
Ap=Q*CICL+ )" (1 —Yx—Inz) —1Inp], I<z<L/p
(2.2)
Ap=Q*CIC(1+ O (1—p)/pz— (1 +C)Inpl, 1/p<2< o0

The characteristic shape of the indicator charts described by Eqs. (2.2) is shown in Fig. 3 as plotted
for the case rp =200 m, re=0.1 m, y=0.02 atm/m, £=1/(1+C)=0+0.3, and q denotes the quantity uQ/
(2rh (ky+ky)). One common feature of all the indicator charts is their convexity facing the depression axis
and the presence of an asymptotic linear interval determined by the third equation of Eqs. (2.2) at fairly
high production rates. The slope of that interval is usually determined by the hydraulic conductivity of the
stratum, while the segment cut off by that interval on the depression axis is equal to yr C/(1+C), i.e., the
limiting pressure gradient for the blocks can be estimated from it.

The indicator curves, while closely similar to those observed in the range of high flow rates, differ
from them at low production rates in lacking a convex sector facing the flow axis. That might be due to
the omission of the quadratic term in the arbitrary filtration law, i.e., in the conversion from Eq. (2.1) to
the simplified Eqs. (2.2). Actually, as the indicator curves plotted in Fig. 4 show, there exists a range of
values of the parameters over which the shape of the predicted indicator curves is close to the empirical
shape; here p*=(2rksh/u) Ap. The top of the figure belongs to p =0.01, the bottom to p=0.03. For curves
1, B=C=2, for curves 2, B=10 and C=0.5, and for curves 3, B=10 and C=2.

3. In the general case (B = 0), the formulas obtained are quite complicated, but still lend themselves
to straightforward analytic investigation. But the analytic investigation must be conducted while entertain-
ing additional conditions for the distinct intervals of changes in rates of flow. We designate
(3.1

ZTIIthh A - P(:t)
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so that P (x) is proportional to the slope of the segment joining the instantaneous point on the indicator
chart to the origin of coordinates. We find from Eqgs. (2.1), to begin with, that P (x) is a continuous func-
tion, and that

PO)=Cin(/p), P(1) =Clln(1/p)+B (1 —p)] (3.2)

Consequently, P (%) is increasing on some interval 0 =x=xy,, i.e., the indicator chart is convex fac-
ing the flow axis. On the other hand, we realize from the third formula in (2.1) that, in the limit as x> o,
we have P (x)— 1n(1/p). That means that when C>(1-B In p)~!, P(x) must necessarily attain a maximum
at some finite xm < =, i.e., there is a point on the indicator curve at which the tangent to the indicator
curve passes through the origin of coordinates. We now consider values of x such that z=px is of the or-
der of several units, 1=px=10. Then with the condition p « 1, we can simplify Egs. (2.2). Assuming the
condition 1<4BCz «A? met, we can obtain, accurate to infinitesimals,

__wo 1 Puory . 2 .
Ap=ESin— 4 Pk c(1+3)(1 “*——1+0+A> (3.3)
This equation corresponds to a straight line cutting off the interval
 Brgue 2 3.4)
Apo =120 C (1 4 B) (1— a )
on the pressure axis.
According to (1.5),
v = (puo /b)) (1 + Bug) = (puo / ;) (1 + B) (3.5)
Hence, from Egs. (3.4) and (3.5),
Apy =ry (1 - T—Téﬂ) (3.6)

That means that the interval cut off on the pressure axis will enable us to estimate v, if the value of
rk is known (or has been estimated). Finally, for the value of Xy, at which P(x) attains a2 maximum, we
have, in a first approximation, and recalling our previous assumptions:

C(1+B) 2
w=ECED (1 ) (3.7)
The corresponding flow rate
2archkay [ 2
Qun = 27ty =~ (4 — ) (3.8)

Consequently, there is qualitative agreement between the experimentally observed and predicted in-
dicator charts. Verification of the quantitative relationship would be out of the question on the basis of the
material available. Nor can we assume with complete confidence that the mechanism described provides
the only possible explanation for the shape of the indicator charts observed.

4. Up to this point we have been considering a fractured porous stratum in which the pressure inthe
blocks and in the fissures is the same in each cross section. Another limiting model is obtained when we
assume that the porous portion (the blocks) and the channels (pockets or fissures) are opened up only by
the well being driven, share a common external boundary, but do not interact in the stratum cross sections.
For the rate of flow through the channels, we have

2 /1
Ap=L01+MQﬁ=%;In—';’Z« i d (r_c__}ﬂ (4.1)
and for the rate of flow through the porous part we have
r
Ap=-L In % 4o, (4.2)
The total flow rate
Q=01+0 (4.3)
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It is readily seen that these equations agree, except for differences in notation, with Egs. (1.2)~(1.4),
We introduce the notation '

Qo ="M L (VT +%rrM]L? —1) (4.4)
whereupon we get »

Ap=LQ+ MQ* (@<

Ap = 1ry (1 tazt gt o — = VA FaP T4 T haba) (0> Q) (4.5)
where
k 1 MO _ @
a=—7c-§-=—c-—, b= T N z—Q. (4-6)
R 1" 2nk1h*rrk
A N )

The corresponding indicator charts are represented by the curves plotted in Fig. 2.

1t must be pointed out, however, that the model with the independent porous stratum is more or less
at variance with the assumed rapid stabilization of the nonstationary process.
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